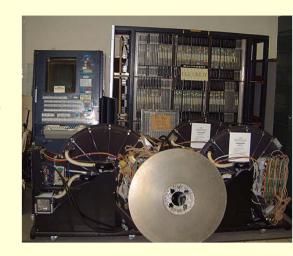
Petaflops Opportunities for the NASA Fundamental Aeronautics Program

Dimitri Mavriplis (University of Wyoming)

David Darmofal (MIT)

David Keyes (Columbia University)

Mark Turner (University of Cincinnati)


Overview

- Two principal intertwined themes
 - 1: NASA simulation capability risks becoming commoditized
 - Rapid advance of parallelism (> 1M cores)
 - Fundamental improvements in algorithms and development tools not keeping pace
 - Hardware and software complexity outstripping our ability to simulate (J. Alonso)
 - Clear vision of enabling possibilities is required
 - What would you do with 1000 times more computational power?
 - 2: HPC Resurgent at National Level : Competitiveness
 - Aerospace industry is at the heart of national competitiveness
 - NASA is at the heart of aerospace industry
 - Can NASA leverage/benefit from renewed national HPC emphasis?

ARMD's Historic HPC Leadership

(Code R)

- ILLIAC IV (1976)
- National Aerodynamic Simulator (1980's)
- 1992 HPCCP Budget:
 - \$596M (Total)
 - \$93M Department of Energy (DOE)
 - \$71M NASA
 - Earth and Space Sciences (ESS)
 - Computational Aerosciences (CAS)

- Computational Aerosciences (CAS) Objectives (1992):
 - "...integrated, multi-disciplinary simulations and design optimization of aerospace vehicles throughout their mission profiles"
 - "... develop algorithm and architectural testbeds ... scalable to sustained teraflops performance"

HPC Today at NASA

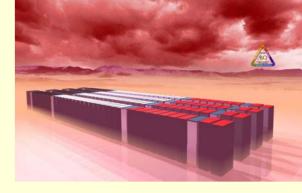
- NASA Columbia Supercluster:
 - 10,240 cpus
- Mostly used as capacity (not capability) facility
 - Many "small" jobs of order O(100) cpus
 - Incremental progress since 1990's
 - Published NASA code benchmarks stop at 512 cpus
 - 512 cpu runs on Intel Touchstone Delta Machine (ICASE/NASA Langley at Supercomputing '92)
 - Supercomputing'05: Only 1 NASA Paper
 - Not demonstrating new aerospace engineering frontiers to be opened by rapid increases in computational power

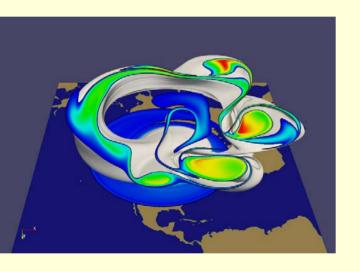
Barriers and Challenges

- A long term vision is needed to:
 - Identify perceived and real barriers
 - Our problems don't require more computing power
 - That is intractable
 - How to run on 100,000 cpus
 - How to solve bigger more difficult problems
 - Demonstrate the potential new frontiers to be opened by increased simulation capabilities
 - Identify required areas of investment
- Grand Challenges are a means, not an end

Selected Grand Challenges

- Digital Flight
 - Static (and dynamic) aerodynamic data-base generation using high-fidelity simulations
 - Time-dependent servo-aero-elastic maneuvering aircraft simulations
- Transient Full Turbofan Simulation
- New frontiers in multidisciplinary optimization
 - Time dependent MDO
 - MDO under uncertainty
- Examples only (not all inclusive)
 - e.g. Aeroacoustics not mentioned


Massive Parallelism


- Explosive growth in parallelism is coming fast and needs to be met head on
 - Will require investment in scalable solvers research and deployment
 - Will require availability of massively parallel architectures for developing/testing solvers
 - SGI ICE system
 - Easy access to massively parallel architectures required to stimulate need
 - Restrict capacity use (small jobs)

Algorithm Development Opportunities

- Modest investment in cross-cutting algorithmic work would complement mission driven work and ensure continual long-term progress (including NASA expertise for determining successful future technologies)
 - Scalable non-linear solvers
 - Higher-order and adaptive methods for unstructured meshes
 - Optimization (especially for unsteady problems)
 - Reduced-order modeling
 - Uncertainty quantification
 - Geometry management
- Current simulation capabilities (NASA/DOE/others) rests on algorithmic developments, many funded by NASA

Science Runs on RedStorm

- SEAM (Spectral Element global Atmospheric Model) Simulation of the breakdown of the polar vortex used to study the enhanced transport of polar trapped air to mid latitudes.
- Record setting 20 day simulation, 7200 cpus for 36 hours. 1B grid points (3000x1500x300), 300K timesteps, 1TB of output.
- Benchmarks up to 64K cpus
- Spectral elements replace spherical harmonics in horizontal directions
- High order (p=8) finite element method with efficient Gauss-Lobatto quadrature used to invert the mass matrix.
- Two dimensional domain decomposition leads to excellent parallel performance.

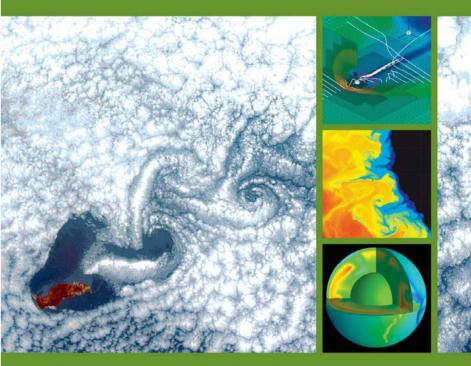
Other Sample Science Simulations

- Magnetically Confined Fusion:
 - Tokomak core turbulence: 3.3 Tflops on 6,400 cpus
 Cray XT3 at ORNL: 70 hour runs
- Molecular Dynamics:
 - Solidification of metals using 0.5 trillion atoms
 - 100 TFlops on 131,072 cpus of IBM Blue Gene at LLNL: 7 hour runs
- These types of simulations are considered intractable within NASA aeronautics and most engineering communities
 - Some of the stated Grand Challenges are of this scale and could be done today

Science vs. Engineering

- HPC advocacy has increasingly been taken up by the science community
 - Numerical simulation is now the third pillar of scientific discovery on an equal footing alongside theory and experiment
 - Increased investment in HPC will enable new scientific discoveries
- SciDAC, ScaLES, Geociences,
 NSF Office of Cyberinfrastructure (OCI)....

A SCIENCE-BASED CASE FOR LARGE-SCALE SIMULATION


VOLUME 1

OFFICE OF SCIENCE U.S. DEPARTMENT OF ENERGY

JULY 30, 2003

ESTABLISHING A PETASCALE COLLABORATORY FOR THE GEOSCIENCES

Technical and Budgetary Prospectus

Engineering Community

- Engineering in general and NASA Aero in particular:
 - Our problems are not complex enough to warrant such large scale simulations and hardware costs
 - Prefer to reduce cost of current simulation (i.e. move to a cluster) instead of increasing the simulation capability at fixed cost (on best available hardware)
 - That is intractable!
 - Doing time dependent MDO
 - Need to store entire time dependent solution history
 - Commonplace for large science applications today
 - Data asssimilation in atmospheric science (NCAR)
 - Inverse problems in earthquake simulation (San Diego Center)
- Commodity simulation on commodity hardware for commodity engineering
 - Our expertise is in systems integration (only!)...

Resurgence of HPC Nationally

- American Competitiveness Initiative (2006)
- Preceded by numerous studies and recommendations on the need for increased investment in HPC
 - NITRD (2005)
 - PITAC (2005)
 - NSF Simulation based
 Engineering Science (2006)

Simulation - Based Engineering Science

Revolutionizing Engineering Science through Simulation

May 2006

Report of the National Science Foundation
Blue Ribbon Panel on
Simulation-Based Engineering Science

Recent NSF Report

- Engineering based simulation needs more attention
 - Science has been successful recently as advocate
- Mainly structures, crash dynamics, materials
- No mention of aeronautics activities

National HPC and Aeronautics

- NITRD 2005:
 - No mention of NASA HPC at all
- PITAC 2005:
 - Aerospace HPC only mentioned briefly (and erroneously)
- Competitiveness Initiative Allocates \$ for:
 - National Science Foundation
 - DOE Office of Science
 - NIST
 - Engineering small player, NASA/DOD not players
- Isn't Engineering as important (or more) than Science with respect to National Competitiveness?

Aeronautics and HPC

- NASA Aeronautics has traditionally been at interface of HPC research and leading-edge engineering applications (more so than NSF report examples)
 - Fundamental Algorithmic research
 - Real world applications and close industry collaboration
 - Tools developed by ARMD serve other NASA Missions
- Aeronautics HPC impact and role much broader than considerations in OSTP National Aeronautics Plan
 - Traditionally a driver for engineering simulation
 - Similar to DOE Office of Science:
 - Broad support for national science research
- This viewpoint requires NASA Aero to participate in national HPC initiatives
 - Engineering HPC requirements need to be voiced
 - Reformulated NASA Fundamental aero well positioned to be this voice

Conclusions

- Other communities have spent great effort to formulate the case for increased HPC investment
 - DOE SciDAC:
 - Scientific Simulation Initiative
 - Advanced Scientific Computing (1998)
 - SciDAC Report (2000)
 - Science Based Case for Large Scale Simulation (ScaLES: 2003, 2004)
 - Petascale Collaboratory for the GeoSciences (2006)
 - NSF Office of Cyber Infrastructure
 - 62 testimonials, 700 survey responses, Panel of 9
- We have provided an example of how this may be done for NASA Aeronautics